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SYSTEM, METHOD, AND COMPUTER
PROGRAM PRODUCT FOR SAMPLING A
HIERARCHICAL DEPTH MAP

FIELD OF THE INVENTION

The present invention relates to computer graphics, and
more particularly to the algorithms that utilize depth buffers.

BACKGROUND

Depth buffers store a plurality of values that indicate a
depth for surfaces of objects in a three-dimensional scene.
Depth buffers are implemented for many types of computer
graphics rendering applications. A depth value may be used to
determine whether an object is occluded by other objects
relative to a particular viewpoint. Typically, a depth buffer
includes a plurality of values associated with a corresponding
plurality of pixels in a digital image. Each value in the depth
buffer may represent the depth of the closest object to a
viewpoint corresponding with a particular pixel.

Some algorithms, such as screen space ambient occlusion
algorithms, sample a plurality of different values within the
depth buffer to calculate an ambient obscurance (AO) value
for each pixel. The net performance of these techniques suf-
fers because of a large number of scattered reads of the depth
buffer, which yields low cache efficiency. Thus, there is a
need for addressing this issue and/or other issues associated
with the prior art.

SUMMARY

A system, method, and computer program product are
provided for sampling a hierarchical depth map. An approach
for sampling the hierarchical depth map includes the steps of
generating a hierarchical depth map and reading a value asso-
ciated with a sample pixel from a target level of the hierar-
chical depth map based on a difference between the sample
pixel and a target pixel. The hierarchical depth map includes
at least two levels.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a flowchart of a method for sampling a
hierarchical depth map, in accordance with one embodiment;

FIG. 2 illustrates a flowchart of a method for implementing
an algorithm for scalable ambient obscurance, in accordance
with one embodiment;

FIG. 3 illustrates a hierarchical depth map, in accordance
with one embodiment;

FIG. 4 illustrates an a plurality of sample pixels for a target
pixel in a scalable ambient obscurance algorithm, in accor-
dance with one embodiment;

FIG. 5 illustrates a parallel processing unit (PPU), accord-
ing to one embodiment;

FIG. 6 illustrates the streaming multi-processor of FIG. 5,
according to one embodiment; and

FIG. 7 illustrates an exemplary system in which the various
architecture and/or functionality of the various previous
embodiments may be implemented.

DETAILED DESCRIPTION

Many different types of rendering algorithms utilize depth
buffers (i.e., Z buffers) n one or more calculations as part of
the algorithm. For example, Ambient Occlusion (AO) algo-
rithms generate a shading effect to approximate the way light
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radiates in the real world. The AO algorithms determine the
amount by which nearby geometry occludes a specific point
on a surface. If the nearby geometry occludes the point, then
the point may be rendered to include a shadow (e.g., rendered
with a lower intensity). However, if nearby geometry does not
occlude the point, then the point may be rendered without a
shadow (e.g., rendered with a higher intensity). It will be
appreciated by one of ordinary skill that performing ambient
occlusion calculated in model space (i.e., by sampling each
object to determine if the object occludes the point) cannot be
performed in real-time at full high definition resolution using
conventional GPUs while maintaining interactive frame
rates. Therefore, one technique that generates sufficient
approximations to a full AO algorithm is screen space ambi-
ent occlusion (SSAO).

In SSAOQ algorithms, the model is first rasterized to pro-
duce a depth buffer that associates each pixel location (or
sample location if the depth buffer is implemented at a sub-
pixel resolution) with a depth ofthe geometry that is closest to
the viewpoint for the pixel. Once the depth buffer is gener-
ated, an approximate ambient obscurance for a pixel may be
calculated by sampling a plurality of nearby pixels to deter-
mine whether that pixel is likely occluded by the nearby
geometry. In some SSAO algorithms, both the depth and the
surface normal for each pixel may be used to determine the
approximate occlusion. Conventional SSAO algorithms have
poor performance due to the scattering of the sampled points
in the depth buffer, which yields low cache efficiency and
generates a large number of long-latency memory access
requests.

An exemplary technique for encoding depth buffers is dis-
closed which improves performance of algorithms that
sample a large number of scattered entries in the depth buffer,
thereby improving cache efficiency and reducing the number
of'long-latency memory access requests for sampling nearby
entries.

FIG. 1 illustrates a flowchart of a method 100 for sampling
a hierarchical depth map, in accordance with one embodi-
ment. At step 102, a hierarchical depth map is generated. In
one embodiment, the hierarchical depth map is an array of
values having two or more levels, where a first level is popu-
lated based on a plurality of values in a depth buffer and a
second level is populated with a subset of values from the first
level. At step 104, a value associated with a sample pixel is
read from a target level of the hierarchical depth map. In one
embodiment, the target level is based on a distance of the
sample pixel from a target pixel. It should be noted that, while
various optional features are set forth herein in connection
with the hierarchical depth map, such features are set forth for
illustrative purposes only and should not be construed as
limiting in any manner.

FIG. 2 illustrates a flowchart of a method 200 for imple-
menting an algorithm for scalable ambient obscurance
(SAO), in accordance with one embodiment. It should be
strongly noted that the following information is set forth for
illustrative purposes and should not be construed as limiting
in any manner as other algorithms may utilize hierarchal
depth maps in addition to or in lieu of the SAC) algorithm
illustrated by the flowchart of FIG. 2.

At step 202, a depth buffer is generated by performing a
high-precision Z-pass in a graphics processing unit (GPU). In
one embodiment, the high-precision Z-pass is performed as a
depth-only pre-pass through a GPU. A set of model data (i.e.,
graphics primitives such as triangles, quads, or triangle strips)
is transmitted to a GPU. The model data is transformed and
rasterized in depth to produce a z-coordinate for each frag-
ment (i.e., portion of a pixel associated with a given surface
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object). The z-coordinate is tested against all other z-coordi-
nates associated with that pixel location to determine the
closest object to a particular viewpoint, and if the z-coordi-
nate is the closest object, then the z-coordinate is stored in the
depth buffer at an entry corresponding to that pixel location.
Once all of the model data has been rasterized, the resulting
depth buffer represents the length of a ray from the viewpoint
to the closest surface at each pixel location in a rasterized
image.

In order to increase the accuracy of results in the SAO
algorithm, care should be taken to populate the depth buffer
with the highest precision possible. In one embodiment, the
precision of the depth buffer may be increased by implement-
ing the following optimizations. A model-view projection
matrix may be computed at double precision on a host pro-
cessor before casting the model-view projection matrix to
single precision for transformations performed in vertex
shaders on the GPU. For the model-view projection matrix, a
far clipping plane may be chosen at a depth of negative
infinity (-c0), which may reduce the number of floating point
operations performed when calculating the matrix product. In
addition, when calculating transformations in the GPU, halfa
bit of precision may be saved by multiplying vectors on the
left of column-major matrices (e.g., the model-view projec-
tion matrix). It will be appreciated that the optimizations
above are merely suggestions for improving the accuracy of
the algorithm and should not be construed as limiting in any
manner.

Atstep 204, a hierarchical depth map is generated based on
the depth buffer. In one embodiment, the depth buffer is used
to populate a base level of the hierarchical depth map. Typi-
cally, the depth buffer generated by GPUss stores depth values
as floating point values between zero and one. The base level
of'the hierarchical depth map converts the depth values in the
depth buffer to camera-space values that indicate a z value
between the location of the near clipping plane (z,) and the
location of the far clipping plane (z). Successive higher levels
of the hierarchical depth map are populated by selecting a
subset of values from the next lowest level of the hierarchical
depth map. The hierarchical depth map includes at least two
levels, abase level corresponding to the full resolution of the
digital image, and a first level corresponding to a resolution
less than that of the base level (e.g., half the resolution of the
base level). The higher levels of the hierarchical depth map
(i.e., level 1, level 2, etc.) ensure that spatially distributed
samples are read with high cache efficiency (i.e., adjacent
pixels processed in parallel by the GPU will typically read the
same samples from the hierarchical depth map when sam-
pling pixels farther away from the target pixel location).
Because a small region of each level of the hierarchical depth
map remains in the cache, fewer read requests will be trans-
mitted to memory (i.e., DRAM), resulting in high bandwidth
and low latency.

At step 206, for each target pixel of a digital image for
which the SAO algorithm is being executed, a plurality of
sample pixels are selected. In one embodiment, for each
target pixel, the plurality of sample pixels are distributed on a
half-sphere around a point C centered at a point on a surface
intersected by a ray projected from the viewpoint in a direc-
tion associated with the target pixel. In one embodiment, the
point C is reconstructed from a value z_. which is read from
the base level of the hierarchical depth map at an index asso-
ciated with the target pixel given by an x-coordinate (x') and
a y-coordinate (y'). The x-coordinate and y-coordinate of
point C are given by the equations:
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, 1 (Eq. 1
. 1_P0'2_2(x +§]
R w-Poo
L1 (Eq. 2)
1+P, —Z(y + j)
Yc=2Zc- P - 7}!_[,171
. . (acC BC) (Eq. 3)
fic = normalizd — X
ay  ax'

In Equations 1 and 2, n; and h represent the width and
height of the digital image and P is the model-view projection
matrix. Equations 1 and 2 invert the projection matrix at a
pixel (x',¥') to find a camera-space position point C. Equation
3 gives the estimated surface normal at point C based on the
screen space gradient of z, which gives the orientation of the
half-ball. The world-space radius of the half-ball r corre-
sponds to a screen-space radius r' given by the equation:

S
c

(Eq. 4)

In Equation 3, S' is the pixel size of a one meter radius
object at z equal to negative one meter. In one embodiment,
the plurality of sample pixels is placed in a spiral pattern
around the target pixel. Each sample pixel (s,) is located at a
different distance (h,) from the target pixel given by Equation
7,shownbelow. The location of each of the sample pixels may
be given by the following equation:

s =, Y+ R (Eq. 5)
1 Eq. 6

@ = =(i+0.5) (Eq. 6)
s

Wo=ra; 6 =2rnot+e (Eq. 7

& = {cosh, sind) (Eq. 8)

e =30x"&y +10x'y (Eq. 9

In Equation 7, constant T is the number of turns in the spiral
and angular offset ¢ is the rotation angle given by Equation 9.
In other embodiments, the plurality of sample pixels may be
distributed at random on the surface of the half-ball. However,
it should be noted that random distribution has the potential to
skew the results if the majority of samples are located on only
a portion of the half-ball.

At step 208, for each sample pixel associated with a target
pixel, a filtered value is generated by applying a bilateral filter
to the hierarchical depth map. Each sample pixel is associated
with a particular level (m,) of the hierarchical depth map. A
sample value for the sample pixel is given by selecting a value
in the particular level of the hierarchical depth map associated
with the location ofthe sample pixel, as given by the equation:

e

(Eq. 10)
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-continued
(Eq. 11)

In Equation 10, the level (m,) associated with a sample
pixel (s,) is clamped to a value greater than or equal to zero
and less than or equal to the highest level in the hierarchical
depthmap. Constant q' is a screen-space radius increment that
represents the distance from the target pixel at which the level
of the hierarchical depth map referenced by the sample pixel
changes to a different level of the hierarchical depth map. In
one embodiment, the ratio of h,' and q' is rounded up to the
next highest integer. The optimal value for q' may depend on
the architecture implementing the SAO algorithm. Example
values for q' that have resulted in accurate ambient obscur-
ance maps as calculated by some experimental architectures
are between 8 and 32.

Each sample pixel s, is reconstructed by applying Equa-
tions 1 and 2 to 7, (i.e., Z=Z,). In one embodiment, a bilateral
2x2 filter may be applied to the generated sample pixels,
averaging four weighted values to reduce the variance across
a continuous surface (i.e., the filter kernel generates the fil-
tered value with Gaussian weights modulated by the differ-
ence in depth between the generated sample pixels and nearby
pixels).

At step 210, an ambient obscurance map is generated for
each of the pixels of the digital image by filtering the raw
sample map, generated in step 208, using a bilateral filter with
a number of taps. The bilateral filter ensures the final value is
smoothed across surfaces while not applying the filter across
depth discontinuities. In one embodiment, a two-pass bilat-
eral one-dimensional filter is applied (one horizontal pass and
one vertical pass) having seven taps in each pass, which
generates a final AO value based on 196 sample values per
target pixel (based on the 2x2 bilateral filter applied in step
208 and the 7x7 taps in the two-pass bilateral one-dimen-
sional filter applied in step 210). Each of the taps may be
spread out by incrementing the pixel locations by three pixels
in each direction. In other embodiments, a different number
of taps or distance between taps may be implemented in the
two-pass bilateral one-dimensional filter.

More illustrative information will now be set forth regard-
ing various optional architectures and features with which the
foregoing framework may or may not be implemented, per
the desires of the user. It should be strongly noted that the
following information is set forth for illustrative purposes and
should not be construed as limiting in any manner. Any of the
following features may be optionally incorporated with or
without the exclusion of other features described.

FIG. 3 illustrates a hierarchical depth map 300, in accor-
dance with one embodiment. As shown in FIG. 3, a base level
310 (Z,) of the hierarchical depth map 300 includes a plural-
ity of depth values associated with a corresponding plurality
of pixels in a digital image. As is known in the art, a digital
image that represents a two-dimensional (2D) view of a set of
geometry data may be rendered from a model. For each 3D
object in the model, the object (i.e., a primitive such as a
triangle or triangle strip) is projected onto a 2D viewing plane
and a coverage mask that defines the intersection of a projec-
tion of the 3D object with the pixels of the 2D viewing plane
is determined. For each of the covered pixels, the depth of the
surface of the 3D object at a point that corresponds to the pixel
is determined and compared against the depth of each of the
previously rendered 3D objects, as stored in a depth buffer. If
the depth of the surface of the 3D object is closer to the
viewing plane than the depth stored in the depth buffer, then
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the depth buffer is updated and the pixel is rendered according
to the vertex attributes for the object (e.g., color attributes,
texture coordinates, etc.).

The base level 310 of the hierarchical depth map 300 is
populated from a depth buffer associated with a digital image.
In other words, each of the depth values in the base level 310
corresponds to a z value stored in the depth buffer for one of
the pixels of the digital image. For example, a first depth value
located at entry Z,(0,0) in the base level 310 corresponds to a
first pixel in the digital image located at the upper left corner
of'the digital image. In some embodiments, each of the depth
values corresponds to a portion of a pixel of the digital image,
such as embodiments where multi-sample antialiasing
(MSAA) is implemented in the graphics pipeline.

The hierarchical depth map 300 includes additional levels
(e.g., etc.) that include a subset of values from the base level
310 of'the hierarchical depth map 300. The resolution of each
of the additional levels may be smaller than the next lower
level within the hierarchy. For example, in one embodiment,
the resolution of the first level 320 of the hierarchical depth
map 300 is half (both vertically and horizontally) that of the
base level 310 of the hierarchical depth map 300. In other
embodiments, the resolution of each successive level of the
hierarchical depth map 300 may be reduced by a different
amount, such as the reduction of the resolution by a quarter
with each successive level of the hierarchical depth map 300.

As shown in FIG. 3, the hierarchical depth map 300
includes a first level 320 (Z,) at half the resolution of the base
level 310 of the hierarchical depth map 300. Each of the depth
values stored in the first level 320 (Z,) corresponds to a single
one of the depth values stored in the base level 310 of the
hierarchical depth map 300. Unlike a mip-map, where the
values in the lower resolution mip-maps are calculated as an
average of multiple values sampled from a higher resolution
mip-map, each of the values in a particular level of the hier-
archical depth map 300 is selected from one of every N values
(e.g., one out of every 4 values) of the previous level in the
hierarchy.

In one embodiment, the values selected from the next lower
level of the hierarchical depth map 300 are selected based on
arotated grid pattern. An equation governing the selection of
values according to one such rotated grid pattern is illustrated
by Equation 12:

zoi {097 =2, { 2%+ (P &OBTIDOBT) 2+

F&OB1YD05T) ) (Eq. 12)

In other words, a depth value stored in an m+1 level of the
hierarchical depth map 300 having an x' coordinate and a y'
coordinate is selected from an m level of the hierarchical
depth map 300 that (1) has a first coordinate calculated as two
times the x' coordinate plus an exclusive bitwise OR of one
and a bitwise AND of the y' coordinate and one; and (2) has a
second coordinate calculated as two times the y' coordinate
plus an exclusive bitwise OR of one and a bitwise AND of the
x' coordinate and one. The rotated grid pattern set forth above
selects four depth values for every sixteen depth values in a
particular level of the hierarchical depth map 300 to generate
four corresponding values in the next successive level of the
hierarchical depth map 300. Other embodiments may select
the depth values based on a different type of mapping, such as
a mapping that selects the upper left value in every 2x2 array
of'pixels or a mapping that selects four depth values for every
sixty-four depth values (in the case where resolution is quar-
tered). It is contemplated that other types of mappings are
within the scope of the present disclosure.

FIG. 3 shows the mapping using the rotated grid pattern
illustrated by Equation 12. As shown in FIG. 3, a first depth
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value 325(0) in the first level 320 of the hierarchical depth
map 300 corresponds to a corresponding first depth value
315(0) inthe base level 310 of the hierarchical depth map 300.
According to Equation 12, the first depth value 325(0) is
associated with coordinates (e.g., 0,0) for entry Z,(0,0),
which corresponds to entry Z,(1,1) in the base level 310 of the
hierarchical depth map 300. Similarly, a second depth value
325(1) in the first level 320 of the hierarchical depth map 300
corresponds to a second corresponding depth value 315(1) in
the base level 310 of the hierarchical depth map 300, a third
depth value 325(2) in the first level 320 of the hierarchical
depth map 300 corresponds to a third corresponding depth
value 315(2) in the base level 310 of the hierarchical depth
map 300, and a fourth depth value 325(3) in the first level 320
of the hierarchical depth map 300 corresponds to a fourth
corresponding depth value 315(3) in the base level 310 of the
hierarchical depth map 300. The second depth value 325(1) is
associated with coordinates (e.g., 1,0) for entry Z,(1,0),
which corresponds to entry Z,(3,0) in the base level 310 of the
hierarchical depth map 300. The third depth value 325(2) is
associated with coordinates (e.g., 0,1) for entry Z,(0,1),
which corresponds to entry Z,(0,3) in the base level 310 of the
hierarchical depth map 300. The second depth value 325(3) is
associated with coordinates (e.g., 1,1) for entry Z,(1,1),
which corresponds to entry Z,(2,2) in the base level 310 of the
hierarchical depth map 300.

The hierarchical depth map 300 also includes a second
level 330 (Z,) at half the resolution of the first level 320 of the
hierarchical depth map 300. In other words, the second level
330 is at quarter the resolution of the base level 310 of the
hierarchical depth map 300. The depth values stored in entries
of the second level 330 correspond to depth values stored in
entries of the first level 320 of the hierarchical depth map 300
according to the same mapping that is used to map depth
values stored in entries of the first level 320 depth values
stored in entries of the base level 310 of the hierarchical depth
map 300. For example, a first depth value 335(0) stored in
entry Z,(0,0) in the second level 330 of the hierarchical depth
map 300 corresponds to a fourth depth value 325(3) stored in
entry Z,(1,1) in the first level 320 of the hierarchical depth
map 300. The first depth value 335(0) stored in entry Z,(0,0)
in the second level 330 of the hierarchical depth map 300 also
corresponds to a fourth depth value 315(3) stored in entry
7,(2,2) in the base level 310 of the hierarchical depth map
300. In one embodiment, the different levels of the hierarchi-
cal depth map 300 may be generated in parallel.

Although not shown, additional levels may be included in
the hierarchal depth map 300 up to a final level (i.e., a K*
level) that only includes a single depth value stored in entry
7.:(0,0). Specific implementations may omit any number of
levels of the hierarchal depth map 300 as long as the hierar-
chal depth map 300 includes at least one additional level in
addition to the base level 310.

FIG. 4 illustrates a plurality of sample pixels 430 for a
target pixel 420 in an SAO algorithm, in accordance with one
embodiment. The SAO algorithm highlights one technique
for sampling values from the hierarchal depth map 300 to
generate an ambient obscurance map, as described above in
the flowchart of FIG. 2. In order to calculate an ambient
obscurance value for a target pixel 420 in a digital image,
SAO algorithms sample a plurality of points in a depth buffer
in order to determine whether nearby geometry is likely to
occlude a point on the surface of an object corresponding to
the target pixel. In order to calculate the ambient obscurance
value for the target pixel 420, a process (i.e., one or more
threads) samples a plurality of locations in the hierarchal
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depth map 300 that correspond to a plurality of sample pixels
430 nearby the target pixel 420 in the digital image 400.

In one embodiment, when reading a sample from the hier-
archal depth map 300, a thread determines which level m, of
the hierarchal depth map 300 the sample should be read from,
such as by applying Equation 10 to the location of the sample
pixel 430. The circles 410 represent the portion of the screen
space corresponding to different levels of the hierarchical
depth map 300. For example, the first circle 410(0) represents
one (i.e., 2°) times g, and has a radius of four pixels. The
second circle 410(1) represents two (i.e., 2*) times g, and has
aradius of eight pixels. The third circle 410(2) represents four
(i.e., 2%) times q, and has a radius of sixteen pixels. As stated
above, the screen-space radius increment ¢, is typically
between 8 and 32 for good results. However, a screen-space
radius increment of four pixels is shown in FIG. 4 for illus-
trative purposes.

Reading a depth value for each sample pixel 430 located
inside the first circle 410(0) is performed by reading a value
from the base level 310 of the hierarchical depth map 300.
Reading a depth value for each sample pixel 430 located
between the first circle 410(0) and the second circle 410(1) is
performed by reading a depth value from the first level 320 of
the hierarchical depth map 300. Reading a depth value for
each sample pixel 430 located between the second circle
410(1) and the third circle 410(2) is performed by reading a
depth value from the second level 320 of the hierarchical
depth map 300, and so forth.

For example, as shown in FIG. 4, a target pixel 420 may
have an x-coordinate of 24 and a y-coordinate of 8 with
respect to the upper left pixel of the digital image 400 (i.e., a
pixel with an x-coordinate of 0 and a y-coordinate of 0). Each
of the shaded pixels in FIG. 4 represents a sample pixel 430
used in the calculation of the ambient obscurance value. The
sample pixel 430(0) is located at an x-coordinate of 30 and a
y-coordinate of 7 with respect to the upper left pixel of the
digital image 400. In order to determine which level of the
hierarchical depth map 300 to read the depth value associated
with sample pixel 430(0), the distance of the sample pixel
430(0) to the target pixel 420 is calculated. As shown in FIG.
4, the distance h, for sample pixel 430(0) is approximately 5
pixels, and the value zi for sample pixel 430(0) is read from
the first level 320 of the hierarchical depth map 300.

FIG. 5 illustrates a parallel processing unit (PPU) 500,
according to one embodiment. While a parallel processor is
provided herein as an example of the PPU 500, it should be
strongly noted that such processor is set forth for illustrative
purposes only, and any processor may be employed to supple-
ment and/or substitute for the same. In one embodiment, the
PPU 500 is configured to execute a plurality of threads con-
currently in two or more streaming multi-processors (SMs)
550. A thread (i.e., a thread of execution) is an instantiation of
a set of instructions executing within a particular SM 550.
Each SM 550, described below in more detail in conjunction
with FIG. 6, may include, but is not limited to, one or more
processing cores, one or more load/store units (LSUs), a
level-one (L.1) cache, shared memory, and the like.

in one embodiment, the PPU 500 includes an input/output
(I/O) unit 505 configured to transmit and receive communi-
cations (i.e., commands, data, etc.) from a central processing
unit (CPU) (not shown) over the system bus 502. The I/O unit
505 may implement a Peripheral Component Interconnect
Express (PCle) interface for communications over a PCle
bus. In alternative embodiments, the [/O unit 505 may imple-
ment other types of well-known bus interfaces.

The PPU 500 also includes a host interface unit 510 that
decodes the commands and transmits the commands to the
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grid management unit 515 or other units of the PPU 500 (e.g.,
memory interface 580) as the commands may specify. The
host interface unit 510 is configured to route communications
between and among the various logical units of the PPU 500.

In one embodiment, a program encoded as a command
stream is written to a buffer by the CPU. The buffer is a region
in memory, e.g., memory 504 or system memory, that is
accessible (i.e., read/write) by both the CPU and the PPU 500.
The CPU writes the command stream to the buffer and then
transmits a pointer to the start of the command stream to the
PPU 500. The host interface unit 510 provides the grid man-
agement unit (GMU) 515 with pointers to one or more
streams. The GMU 515 selects one or more streams and is
configured to organize the selected streams as a pool of pend-
ing grids. The pool of pending grids may include new grids
that have not yet been selected for execution and grids that
have been partially executed and have been suspended.

A work distribution unit 520 that is coupled between the
GMU 515 and the SMs 550 manages a pool of active grids,
selecting and dispatching active grids for execution by the
SMs 550. Pending grids are transferred to the active grid pool
by the GMU 515 when a pending grid is eligible to execute,
i.e., has no unresolved data dependencies. An active grid is
transferred to the pending pool when execution of the active
grid is blocked by a dependency. When execution of a grid is
completed, the grid is removed from the active grid pool by
the work distribution unit 520. In addition to receiving grids
from the host interface unit 510 and the work distribution unit
520, the GMU 510 also receives grids that are dynamically
generated by the SMs 550 during execution of a grid. These
dynamically generated grids join the other pending grids in
the pending grid pool.

In one embodiment, the CPU executes a driver kernel that
implements an application programming interface (API) that
enables one or more applications executing on the CPU to
schedule operations for execution on the PPU 500. An appli-
cation may include instructions (i.e., API calls) that cause the
driver kernel to generate one or more grids for execution. In
one embodiment, the PPU 500 implements a SIMD (Single-
Instruction, Multiple-Data) architecture where each thread
block (i.e., warp) in a grid is concurrently executed on a
different data net by different threads in the thread block. The
driver kernel defines thread blocks that are comprised of k
related threads, such that threads in the same thread block
may exchange data through shared memory. In one embodi-
ment, a thread block comprises 32 related threads and a grid
is an array of one or more thread blocks that execute the same
stream and the different thread blocks may exchange data
through global memory.

In one embodiment, the PPU 500 comprises X SMs 550
(X). For example, the PPU 100 may include 15 distinct SMs
550. Each SM 550 is multi-threaded and configured to
execute a plurality of threads (e.g., 32 threads) from a par-
ticular thread block concurrently. Each of the SMs 550 is
connected to a level-two (1.2) cache 565 via a crossbar 560 (or
other type of interconnect network). The [.2 cache 565 is
connected to one or more memory interfaces 580. Memory
interfaces 580 implement 16,32, 64, 128-bit data buses, or the
like, for high-speed data transfer. In one embodiment, the Pal
500 comprises U memory interfaces 580(U), where each
memory interface 580(U) is connected to a corresponding
memory device 504(U). For example, PPU 500 may be con-
nected to up to 6 memory devices 504, such as graphics
double-data-rate, version 5, synchronous dynamic random
access memory (GDDRS SDRAM).

In one embodiment, the PPU 500 implements a multi-level
memory hierarchy. The memory 504 is located off-chip in
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SDRAM coupled to the Pal 500. Data from the memory 504
may be fetched and stored in the L2 cache 565, which is
located on-chip and is shared between the various SMs 550.
In one embodiment, each of the SMs 550 also implements an
L1 cache. The L1 cache is private memory that is dedicated to
a particular SM 550. Each of the L1 caches is coupled to the
shared L2 cache 565. Data from the .2 cache 565 may be
fetched and stored in each of the L1 caches for processing in
the functional units of the SMs 550.

In one embodiment, the PPU 500 comprises a graphics
processing unit (GPU). The PPU 500 is configured to receive
commands that specify shader programs for processing
graphics data. Graphics data may be defined as a set of primi-
tives such as points, lines, triangles, quads, triangle strips, and
the like. Typically, a primitive includes data that specifies a
number of vertices for the primitive (e.g., in a model-space
coordinate system) as well as attributes associated with each
vertex of the primitive. The PPU 500 can be configured to
process the graphics primitives to generate a frame buffer
(i.e., pixel data for each of the pixels of the display). The
driver kernel implements a graphics processing pipeline, such
as the graphics processing pipeline defined by the OpenGL
APL

An application writes model data for a scene (i.e., a col-
lection of vertices and attributes) to memory. The model data
defines each of the objects that may be visible on a display.
The application then makes an API call to the driver kernel
that requests the model data to be rendered and displayed. The
driver kernel reads the model data and writes commands to
the buffer to perform one or more operations to process the
model data. The commands may encode different shader
programs including one or more of a vertex shader, shader,
geometry shader, pixel shader, etc. For example, the GMU
515 may configure one or more SMs 550 to execute a vertex
shader program that processes a number of vertices defined
by the model data. In one embodiment, the GMU 515 may
configure different SMs 550 to execute different shader pro-
grams concurrently. For example, a first subset of SMs 550
may be configured to execute a vertex shader program while
a second subset of SMs 550 may be configured to execute a
pixel shader program. The first subset of SMs 550 processes
vertex data to produce processed vertex data and writes the
processed vertex data to the 1.2 cache 565 and/or the memory
504. After the processed vertex data is rasterized (i.e., trans-
formed from three-dimensional data into two-dimensional
data in screen space) to produce fragment data, the second
subset of SMs 550 executes a pixel shader to produce pro-
cessed fragment data, which is then blended with other pro-
cessed fragment data and written to the frame buffer in
memory 504. The vertex shader program and pixel shader
program may execute concurrently, processing different data
from the same scene in a pipelined fashion until all of the
model data for the scene has been rendered to the frame
buffer. Then, the contents of the frame buffer are transmitted
to a display controller for display on a display device.

The PPU 500 may be included in a desktop computer, a
laptop computer, a tablet computer, a smart-phone (e.g., a
wireless, hand-held device), personal digital assistant (PDA),
a digital camera, a hand-held electronic device, and the like.
In one embodiment, the PPU 500 is embodied on a single
semiconductor substrate. In another embodiment, the PPU
500 is included in a system-on-a-chip (SoC) along with one or
more other logic units such as a reduced instruction set com-
puter (RISC) CPU, a memory management unit (MMU), a
digital-to-analog converter (DAC), and the like.

In one embodiment, the PPU 500 may be included on a
graphics card that includes one or more memory devices 504
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such as GDDRS SDRAM. The graphics card may be config-
ured to interface with a PCle slot on a motherboard of a
desktop computer that includes, e.g., a northbridge chipset
and a southbridge chipset. In yet another embodiment, the
PPU 500 may be an integrated graphics processing unit
(1GPU) included in the chipset (i.e., Northbridge) of the
motherboard.

FIG. 6 illustrates the streaming multi-processor 550 of
FIG. 5, according to one embodiment. As shown in FIG. 6, the
SM 550 includes an instruction cache 605, one or more sched-
uler units 610, a register file 620, one or more processing
cores 650, one or more double precision units (DPUs) 651,
one or more special function units (SFUs) 652, one or more
load/store units (LSUs) 653, an interconnect network 680, a
shared memory/L.1 cache 670, and one or more texture units
690.

As described above, the work distribution unit 520 dis-
patches active grids for execution on one or more SMs 550 of
the PPU 500. The scheduler unit 610 receives the grids from
the work distribution unit 520 and manages instruction sched-
uling for one or more thread blocks of each active grid. The
scheduler unit 610 schedules threads for execution in groups
of parallel threads, where each group is called a warp. In one
embodiment, each warp includes 32 threads. The scheduler
unit 610 may manage a plurality of different thread blocks,
allocating the thread blocks to warps for execution and then
scheduling instructions from the plurality of different warps
on the various functional units (i.e., cores 650, DPUs 651,
SFUs 652, and L.SUs 653) during each clock cycle.

In one embodiment, each scheduler unit 610 includes one
ormore instruction dispatch units 615. Each dispatch unit 615
is configured to transmit instructions to one or more of the
functional units. In the embodiment shown in FIG. 6, the
scheduler unit 610 includes two dispatch units 615 that enable
two different instructions from the same warp to be dis-
patched during each clock cycle. In alternative embodiments,
each scheduler unit 610 may include a single dispatch unit
615 or additional dispatch units 615.

Each SM 650 includes a register file 620 that provides a set
of registers for the functional units of the SM 650. In one
embodiment, the register file 620 is divided between each of
the functional units such that each functional unit is allocated
a dedicated portion of the register file 620. In another embodi-
ment, the register file 620 is divided between the different
warps being executed by the SM 550. The register file 620
provides temporary storage for operands connected to the
data paths of the functional units.

Each SM 550 comprises [ processing cores 650. In one
embodiment, the SM 550 includes a large number (e.g., 192,
etc.) of distinct processing cores 650. Each core 650 is a
fully-pipelined, single-precision processing unit that includes
afloating point arithmetic logic unit and an integer arithmetic
logic unit. In one embodiment, the floating point arithmetic
logic units implement the IEEE 754-2008 standard for float-
ing point arithmetic. Each SM 550 also comprises M DPUs
651 that implement double-precision floating point arith-
metic, N SFUs 652 that perform special functions (e.g., copy
rectangle, pixel blending operations, and the like), and P
LSUs 653 that implement load and store operations between
the shared memory/L1 cache 670 and the register file 620. In
one embodiment, the SM 550 includes 64 DPUs 651, 32
SFUs 652, and 32 LSUs 653.

Each SM 550 includes an interconnect network 680 that
connects each of the functional units to the register file 620
and the shared memory/L.1 cache 670. In one embodiment,
the interconnect network 680 is a crossbar that can be con-
figured to connect any of the functional units to any of the
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registers in the register file 620 or the memory locations in
shared memory/L.1 cache 670.

In one embodiment, the SM 550 is implemented within a
GPU. In such an embodiment, the SM 550 comprises J texture
units 690. The texture units 690 are configured to load texture
maps (i.e., a 2D array of texels) from the memory 504 and
sample the texture maps to produce sampled texture values
for use in shader programs. The texture units 690 implement
texture operations such as anti-aliasing operations using mip-
maps (i.e., texture maps of varying levels of detail). In one
embodiment, the SM 550 includes 16 texture units 690.

The PPU 500 described above may be configured to per-
form highly parallel computations much faster than conven-
tional CPUs. Parallel computing has advantages in graphics
processing, data compression, biometrics, stream processing
algorithms, and the like.

For example, an application in memory 104 may be con-
figured to generate the hierarchical depth map 300 using PPU
500. In one embodiment, the application transmits commands
to PPU 500 through the driver kernel that cause PPU 500 to
generate a depth buffer for a three-dimensional scene. The
application may then read the depth buffer (from memory 104
or by querying PPU 500 through the driver kernel) to generate
the hierarchical depth map 300. In one embodiment, the hier-
archical depth map 300 may be encoded as a texture map, and
the steps of the SAO algorithm may be performed in parallel
for different target pixels of the digital image by implement-
ing a pixel shader executed on PPU 500. The threads of the
pixel shader may correspond to a particular target pixel of the
digital image and the ambient obscurance map may be gen-
erated by PPU 500.

FIG. 7 illustrates an exemplary system 700 in which the
various architecture and/or functionality of the various pre-
vious embodiments may be implemented. As shown, a sys-
tem 700 is provided including at least one central processor
701 that is connected to a communication bus 702. The com-
munication bus 702 may be implemented using any suitable
protocol, such as PCI (Peripheral Component Interconnect),
PCI-Express, AGP (Accelerated Graphics Port), HyperTrans-
port, or any other bus or point-to-point communication pro-
tocol(s). The system 700 also includes a main memory 704.
Control logic (software) and data are stored in the main
memory 704 which may take the form of random access
memory (RAM).

The system 700 also includes input devices 712, a graphics
processor 706, and a display 708, i.e. a conventional CRT
(cathode ray tube), LCD (liquid crystal display), LED (light
emitting diode), plasma display or the like. User input may be
received from the input devices 712, e.g., keyboard, mouse,
touchpad, microphone, and the like. In one embodiment, the
graphics processor 706 may include a plurality of shader
modules, a rasterization module, etc. Each of the foregoing
modules may even be situated on a single semiconductor
platform to form a graphics processing unit (CPU).

Inthe present description, a single semiconductor platform
may refer to a sole unitary semiconductor-based integrated
circuit or chip. It should be noted that the term single semi-
conductor platform may also refer to multi-chip modules with
increased connectivity which simulate on-chip operation, and
make substantial improvements over utilizing a conventional
central processing unit (CPU) and bus implementation. Of
course, the various modules may also be situated separately
or in various combinations of semiconductor platforms per
the desires of the user.

The system 700 may also include a secondary storage 710.
The secondary storage 910 includes, for example, a hard disk
drive and/or a removable storage drive, representing a floppy
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disk drive, a magnetic tape drive, a compact disk drive, digital
versatile disk (DVD) drive, recording device, universal serial
bus (USB) flash memory. The removable storage drive reads
from and/or writes to a removable storage unit in a well-
known manner.

Computer programs, or computer control logic algorithms,
may be stored in the main memory 704 and/or the secondary
storage 710. Such computer programs, when executed,
enable the system 700 to perform various functions. The
memory 704, the storage 710, and/or any other storage are
possible examples of computer-readable media.

In one embodiment, the architecture and/or functionality
of the various previous figures may be implemented in the
context of the central processor 701, the graphics processor
706, an integrated circuit (not shown) that is capable of at
least a portion of the capabilities of both the central processor
701 and the graphics processor 706, a chipset (i.e., a group of
integrated circuits designed to work and sold as a unit for
performing related functions, etc.), and/or any other inte-
grated circuit for that matter.

Still yet, the architecture and/or functionality of the various
previous figures may be implemented in the context of a
general computer system, a circuit board system, a game
console system dedicated for entertainment purposes, an
application-specific system, and/or any other desired system.
For example, the system 700 may take the form of a desktop
computer, laptop computer, server, workstation, game con-
soles, embedded system, and/or any other type of logic. Still
yet, the system 700 may take the form of various other devices
including, but not limited to a personal digital assistant (PDA)
device, a mobile phone device, a television, etc.

Further, while not shown, the system 700 may be coupled
to a network (e.g., a telecommunications network, local area
network (LAN), wireless network, wide area network (WAN)
such as the Internet, peer-to-peer network, cable network, or
the like) for communication purposes.

While various embodiments have been described above, it
should be understood that they have been presented by way of
example only, and not limitation. Thus, the breadth and scope
of a preferred embodiment should not be limited by any of the
above-described exemplary embodiments, but should be
defined only in accordance with the following claims and
their equivalents.

What is claimed is:

1. A method comprising:

generating a hierarchical depth map including at least two

levels; and

reading a value associated with a sample pixel from a target

level of the hierarchical depth map based on a difference
between the sample pixel and a target pixel,

wherein the target level of the hierarchical depth map is

calculated by taking a base two logarithm of a ratio of'a
distance between a screen-space location of the sampled
pixel and a screen-space location of a target pixel to a
screen space radius increment value;

generating an ambient obscurance map based on the value

associated with the sample pixel.

2. The method of claim 1, the hierarchical depth map
comprising:

a base level at a first resolution; and

a first level at a second resolution, wherein the second

resolution is less than the first resolution.

3. The method of claim 2, wherein the second resolution is
half the resolution of the first resolution.

4. The method of claim 2, the hierarchical depth map
further comprising a second level at a third resolution,
wherein the third resolution is less than the second resolution.
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5. The method of claim 2, wherein the base level stores a
plurality of values, each value being associated with a differ-
ent pixel of a digital image, and wherein the first level stores
a subset of values selected from the base level.

6. The method of claim 5, wherein the subset of values is
selected based on a rotated grid pattern.

7. The method of claim 6, wherein the rotated grid pattern
is governed by a function that maps a value at a particular
level of the hierarchical depth map to a selected value at the
next lower level of the hierarchical depth map, wherein the
value is associated with a first coordinate and a second coor-
dinate and the selected value is associated with a third coor-
dinate that is equal to the sum of two times the first coordinate
and an exclusive bitwise OR of one and a bitwise AND of the
second coordinate and one and a fourth coordinate that is
equal to the sum of two times the second coordinate and an
exclusive bitwise OR of one and a bitwise AND of the first
coordinate and one.

8. The method of claim 1, wherein the screen space radius
increment value is determined based on at least one of: a
resolution of a digital image, a number of cores of a graphics
processing unit that are configured to access the hierarchical
depth map in parallel, and a size of a cache configured to
temporarily store portions of the hierarchical depth map.

9. The method of claim 1, wherein generating the hierar-
chical depth map comprises:

rendering a plurality of three-dimensional objects in a

graphics processor to generate a depth buffer;
populating a base level of the hierarchical depth map based
on the values in the depth buffer; and

generating a first level of the hierarchical depth map by

selecting a subset of values from the base level of the
hierarchical depth map.

10. The method of claim 1, further comprising:

selecting a plurality of sample pixels associated with the

target pixel;

for each particular sample pixel of the plurality of sample

pixels:

determining a corresponding level of the hierarchical
depth map for the particular sample pixel, and

reading a sample value for the particular sample pixel
from the target level of the hierarchical depth map.

11. The method of claim 10, further comprising applying a
bilateral filter to a 2x2 array of sample values corresponding
to a 2x2 array of target pixels to generate a filtered sample
value.

12. The method of claim 11, wherein generating the ambi-
ent obscurance map comprises applying a two-pass bilateral
filter having a number of taps to a map of filtered sample
values read from the hierarchical depth map.

13. The method of claim 12, wherein the number of taps
applied in each pass of the two-pass bilateral filter is equal to
7.

14. A non-transitory computer-readable storage medium
storing instructions that, when executed by a processor, cause
the processor to perform steps comprising:

generating a hierarchical depth map including at least two

levels; and

reading a value associated with a sample pixel from a target

level of the hierarchical depth map based on a difference
between the sample pixel and a target pixel,

wherein the target level of the hierarchical depth map is

calculated by taking a base two logarithm of a ratio of'a
distance between a screen-space location of the sampled
pixel and a screen-space location of a target pixel to a
screen space radius increment value;
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generating an ambient obscurance map based on the value

associated with the sample pixel.

15. The non-transitory computer-readable storage medium
of claim 14, the hierarchical depth map comprising:

a base level at a first resolution; and

a first level at a second resolution, wherein the second

resolution is less than the first resolution.

16. The non-transitory computer-readable storage medium
of’claim 15, wherein the base level stores a plurality of values,
each value being associated with a different pixel of the
digital image, and wherein the first level stores a subset of
values selected from the base level.

17. A system comprising:

a processor configured to:

generate a hierarchical depth map including at least two

levels; and

read a value associated with a sample pixel from a target

level of the hierarchical depth map based on a difference
between the sample pixel and a target pixel,

wherein the target level of the hierarchical depth map is

calculated by taking a base two logarithm of a ratio of'a
distance between a screen-space location of the sampled
pixel and a screen-space location of a target pixel to a
screen space radius increment value;

generate an ambient obscurance map based on the value

associated with the sample pixel.

18. The system of claim 17, wherein the processor com-
prises a graphics processing unit that includes a plurality of
processing cores.
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19. The system of claim 18, wherein two or more of the
processing cores are configured to read values from the hier-
archical depth map in parallel.

20. The system of claim 18, the hierarchical depth map
comprising:

a base level at a first resolution; and

a first level at a second resolution, wherein the second

resolution is less than the first resolution,

wherein the base level stores a plurality of values, each

value being associated with a different pixel of a digital
image, and wherein the first level stores a subset of
values selected from the base level,

wherein the subset of values is selected based on a rotated

grid pattern,

wherein the rotated grid pattern is governed by a function

that maps a value at a particular level of the hierarchical
depth map to a selected value at the next lower level of
the hierarchical depth map, wherein the value is associ-
ated with a first coordinate and a second coordinate and
the selected value is associated with a third coordinate
that is equal to the sum of two times the first coordinate
and an exclusive bitwise OR of one and a bitwise AND
ofthe second coordinate and one and a fourth coordinate
that is equal to the sum of two times the second coordi-
nate and an exclusive bitwise OR of one and a bitwise
AND of the first coordinate and one.
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